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Abstract 

We describe an error in earlier probabilistic analyses of the pure literal heuristic 

as a procedure for solving k-SAT. All probabilistic analyses are in the constant 

degree model in which a random instance C of k-SAT consists of m clauses selected 

independently and uniformly (with replacement) from the set of all fc-clauses over 

n variables. We provide a new analysis for k = 2. Specifically, we show with 

probability approaching 1 as m goes to oo one can apply the pure literal rule 

repeatedly to a random instance of 2-SAT until the number of clauses is "small" 

provided n/m > A > 1. But if n/m < A < 1, with probability approaching 1 if 

the pure literal rule is applied as much as possible, then at least m1'5 clauses will 

remain. 

Keywords: 2-SAT, constant degree model, Davis-Putnam Procedure, pure literal 

(heuristic), probability of a pure literal 
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1    Introduction 

The satisfiability problem for sets of propositional clauses is the primordial 

NP-complete problem (See[14, p.38]). Also as shown in [14], the satisfiability 

problem for sets of fc-clauses (k-SAT) is iVP-complete for k > 2. The lack of 

polynomial time algorithms for iVP-complete problems has given rise to the 

search for fast heuristic schemes for their solution which will be successful 

"almost surely". Franco [10] and the rest of us [18] give probabilistic analyses 

of the pure literal heuristic as a procedure for solving k-SAT. Unfortunately 

a serious error vitiates the outcomes. We describe the error in §2. For 2-SAT 

we provide a different analysis in §3 showing the efficiency of the pure literal 

heuristic in the cases claimed by Franco. This analysis is based partly on the 

Chvatal and Reed [7] and Goerdt [15] analysis of the probability that a set 

of 2-clauses is satisfiable. In §4 we show the optimal nature of the result in 

§3. 

All of these analyses are in the constant degree model for formulae in 

conjunctive normal form (CNF) having a sequence of m clauses each of 

which is a ^-clause, that is, has a set of k literals selected from a set V of 

n Boolean variables and their negations. In this model clauses are selected 

independently from one another with the uniform distribution on the set of 

all possible k-clauses, denoted Qk(V) or Qk{n). To allow changes in param- 

eters Franco and Pauli [12] denote this distribution as f(m,n,k). We omit 

k as it is clear. This model has been used in many studies of k-SAT includ- 

ing Brown and Purdom [3], Purdom and Brown [19], Franco and Paull[12], 

Franco [10], Franco, Plotkin, and Rosenthal [13], M-T Chao and Franco [5] 

and [6], Chvätal and Reed [7], and Goerdt [15].   It has also been used in 



the study of k-Exact SAT in Rosenthal, Speckenmeyer, and Kemp [22] and 

Rosenthal [21]. The reader should be cautioned that among these papers 

there is confusing variation in the symbols used for the number of variables, 

the number of clauses, and the number of literals per clause. 

The pure literal heuristic is based on the pure literal rule which is part 

of the Davis-Putnam Procedure (DPP) [8], an algorithm for satisfiability 

(SAT) and k-SAT. Franco and Pauli [12] provide a recent description. [12], 

[10], [13], [5], [6], etc. study aspects of DPP using the constant degree model. 

Goldberg [16], Goldberg, Purdom, and Brown [16], Purdom and Brown [20], 

Bugrara, Pan, and Purdom [4], Franco [11], etc. study aspects of DPP for 

SAT using another distribution, the constant density model. A lot of the 

work in the constant density model involves the pure literal rule. Recently 

Broder, Freize, and Upfal [2] used another model to study the pure literal 

rule for 3-clauses. In this model there are also m A;-clauses, but the km 

literals are chosen uniformly and independently from the set of 2n available 

literals. 

A pure literal for a formula in CNF is a literal / which occurs in at least 

one clause, but whose negation does not occur in any clause. The pure literal 

rule declares / to be true, and deletes all clauses containing /. The pure literal 

heuristic PL keeps trying to apply the pure literal rule until the sequence of 

remaining clauses is so small that the splitting rule (another one of DPP's 

rules) will efficiently determine satisfiability. If the pure literal rule can not 

be applied this often, the pure literal heuristic gives up. Franco [10] provides 

a more formal description of PL. 



In [10] Franco examines the performance of PL applied to random (ac- 

cording to the constant degree model) formulae with m clauses from Qk(n) 

where n = Am and A > 1. His intention is to show that asymptotically (in 

m) almost always PL can be applied until only log2 m clauses remain. He 

does not analyze PL directly, but rather analyzes a procedure PL' whose 

probability of giving up is at least the probability PL gives up. In PL' if 

a pure literal occurs in r > 1 clauses, then one reintroduces r - 1 random 

fc-clauses built using the variables not yet assigned a truth value. For the 

reader's convenience we paraphrase Franco's description of PL'. 

In the following description A denotes the set of variables not yet assigned 

a truth value, D denotes the sequence of remaining fc-clauses, and E denotes 

the set of fc-clauses that are reintroduced. Initially A = V, D is the sequence 

of A;-clauses from the original random formulae, and E = 0 

Procedure PL'(D, A, h) 

(1) while \D\ >hdo 

(2) if there is no pure literal in D, then "give up" 

(3) else begin 

(4) choose a pure literal / in D; 

(5) delete the variable of / from A; 

(6) delete all clauses containing / from D; 

(7) if r clauses were removed in line (6), select r — 1 clauses 

independently and uniformly from Qk(A), and adjoin 

these to both D and E. 

end;    (8) return "satisfiable" or "unsatisfiable" as determined 

by the splitting rule applied to D — E; 

end PL' 
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2    The Error 

Lemma 1 of [10] is the calculation of the probability that PL' does not give 

up on an /(m,n)-random instance (where n > m). It is claimed that after 

the ith iteration of the while loop in PL' the sequence D is an f(m — i,n — i)- 

random instance, i.e. that the clauses of D are independently and uniformly 

selected from Qk{A). We show this is false. A similar error occurs in [17] 

and is essentially a sophisticated version of Bertrand's paradox. 

To show that the claim is false we must first clarify line (4) of PL'. 

The choice of a pure literal in D may be made algorithmically or randomly 

(viewing PL' as a randomized algorithm). In the random case for every 

occurrence of line (4) one assigns probabilities (or "weights") to the possible 

choices of pure literal. We call any such assignment a weighting scheme. For 

example, we could assign each pure literal equal weight. The algorithmic 

case can be viewed as a special instance of the random case in which we 

use a weighting scheme that always assigns one pure literal weight 1 and the 

others weight 0. 

We show that for no weighting scheme does one retain independence 

after the completion of one pass through the while loop of PL'. For ease of 

exposition we do this for m = 4, n = 6, k = 3. 

We represent a clause by listing its variables and beneath each variable 

placing + or — to indicate a positive or negative occurrence of that variable. 

Let A = {vi | 1 < i < 6} and ej € {+, -} for 1 < j < 3. For each se- 

quence D consisting of four clauses from Qz{A), let WD{^\^2, ^Z) be the prob- 

ability that in the first execution of the while loop on line (1) of PL'(D, A, h) 

the pure literal chosen on line (4) was u4, u5, or ve and that the new D arising 



at the end of line (7) is 

vi   v2   v3   ;   ui   v2   v3   ;   *   *   * 

+    +    +        ei    e2   e3        *   *   * 

where *'s indicate arbitrary entries. 

Let <r(ei,e2,e3) = T,\D\=4WD{ei,e2,e3). The assumption that the result 

of one pass through the while loop is an /(3,5)-random instance implies 

cr(e1,e2,e3) is independent of the values of e!,e2,e3. Let us examine what 

would cause an imbalance between <7+ = cr(+,+,+) and <r_ = cr(—,—,—). 

We need only consider cases where v^v5, or v& is pure. If either or both 

of the Vi,v2,v3-c\auses listed are obtained via E (on line (7)) then these 

two ui,u2,ü3-clauses are obtained independently and so no imbalance could 

occur. So we can restrict our attention to the remaining case where the two 

ul5 u2, u3-clauses listed came from the original D and t>4, v5, or v6 is pure. We 

call such a D a potential threatening contributor to cr+ or cr_, respectively. 

a+ and <r_ have corresponding potential threatening contributors. The only 

difference is that in such contributors to cr_ vi,v2, and v3 are not pure and 

hence 

Prob(pure chosen is in {^4,^5,^6}) = 1 

whereas in such contributors to cr+, Vi,v2, and/or v3 may be pure. Thus 

to guarantee that cr+ is as large as <7_ the weighting scheme when handling 

potential threatening contributors to cr+ must give no weight to any pure 

literal in {^1,^2,^3}- In particular if the original D is 

vi   v2   v3   ;   vi   v2   v3   ;   v4   v5   v6   ;   v4   v5   v6 

+    +    +        +    +    +        +    +    +        +    +    + 

6 



then ui, t>2, and v^ must not be selected. Mutatis mutandi U4, i>5, and VQ must 

not be selected. We have arrived at a contradiction. 

It is worth noting that a similar argument shows that PL' never decreases 

the probability of impurity. More precisely, let V be a set of n Boolean 

variables, V a set of n — s Boolean variables (where s > 0), C a sequence of 

m clauses selected independently and uniformly from Qk(V), C a sequence of 

m — s clauses selected independently and uniformly from Qk(V')- Let t > 0. 

Let E' be the event that after t complete passes through the while loop of 

line (1) of PL'(C',V',h) there is a pure literal and let E be the event that 

after s + t complete passes through the while loop of line (1) of PL'(C, V, h) 

there is a pure literal. Then Prob(£)< Pvob(E'). 

3    Pure Literal Rule for 2-SAT 

Using a different analysis we now show that the pure literal heuristic succeeds 

when k = 2 provided the ratio of the number of variables over the number 

of clauses is asymptotically greater than 1. 

THEOREM 3.1 

Let A > 1. Assume n > Am. Let C be a random sequence of m clauses from 

Q2(n). Then 

Prob(the pure literal rule may be applied to C until at most 

log2(n) clauses remain)= 1 — o(l). 

NOTES: n is a function of m. 

Throughout §3 and §4 all asymptotic notations are asymptotic in m. 



REMARK 3.2 

The proof, especially the Configuration Lemma below, is based on the Chvätal- 

Reed [7] proof that under the same hypotheses 

Prob(C is satisfiable) = 1 — o(l). 

More generally we show: 

THEOREM 3.3 

Same hypotheses as Theorem 3.1. If 1 = o(i), then 

Prob(the pure literal rule may be applied to C until at most 

t clauses remain) = 1 — o(l). 

NOTE: t is a function of m. 

PROOF. For notational simplicity we assume Am is an integer. Adding 

clauses to C only makes it harder to reduce to t clauses. So we may as well 

assume n = Am. 

DEFINITION 3.4 (Pure literal block) 

A pure literal block (PL block) is a sequence of clauses with no pure literals, 

that is, every variable which occurs does so both positively and negatively. 

To prove Theorem 3.3 it suffices to prove 

Prob(there is a PL block of size at least t) = o(l). 

It is well known that 2-SAT has fast algorithms (see e.g. Aspvall, Plass, 

and Tarjan[l]). Underlying this result is the observation that a 2-clause 

li V/2 may be viewed as the implications ->/i -> k and/or -i/2 -» h- Hence, a 

sequence of 2-clauses may be viewed as a directed graph on the set of literals. 

From this viewpoint a PL block B is a sequence of directed edges so that 



every vertex of B is both the initial vertex of a directed edge and the terminal 

vertex of a directed edge. 

DEFINITION 3.5 (Cycle) 

A cycle is a set /i -> I2J2 —>■ ^3, • • • ,h —>■ h of directed edges.  Henceforth, 

we write l\ -» I2 —>■•••-> la —> l\. 

As it has only finitely many vertices any PL block includes a cycle. More 

generally any vertex of a PL block is either on a cycle or lies between two 

cycles. 

PROPOSITION 3.6  (CONFIGURATION LEMMA) 

Same hypotheses as Theorem 3.1. 

a) Prob(C has two cycles connected by a path)= o(l). 

b) Prob(C has two directly connected cycles)= o(l). 

c) Prob(C has two overlapping cycles)= o(l). 

PROOF. 

a) Two cycles connected by a path consist of 

li —>■ I2 —>•••—>• lPl —>■ hi the first cycle 

mi —v 1712 —> • • • —^ mp2 -^ 
mi? the second cycle 

and 

h —>• n2 —>•••• —>• nP3 —>■ mi, the connecting path. 

b) Two directly connected cycles consist of 

li -)■ I2 -± ••- -> lPl —> h, one cycle 

and 
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/i —>■ m2 -> • • • —> rnP2 -> l\, the other cycle, 

c) Two overlapping cycles consist of 

h -»• ^2 ->• —► ^ -» —> ipi+P2 -+ 'i>one cycle 

and 

/i ->■ m2 -» • • • -* mP3 -» /Pl, the nonoverlapping part of the other cycle. 

The proofs for cases b) and c) are omitted as they are similar to the proof 

for case a). The crucial point in each case is that the number of literals used 

is one less than the number of clauses used. 

For the moment fix pi, p2, and p3. In case a) one must choose p = 

Pi + P2 + P3 clauses and p — 1 literals for these cycles and their connecting 

path. The literals may be chosen in at most (2n)p_1 ways and the clauses may 

be chosen in at most mp ways. Thus, the probability of this configuration 

for fixed pi,p2, and p3 is at most 

(2n)p-1mp    _   _1_ 1_ /   n 

2n\P \n- 1 

<    ——    as p < n) 
-    2n\"   V     H        ' 

So the probability of this configuration for some pi,p2, and p3 with p = 
4 p2 

p1 + p2 +p3 is at most —^-. Hence, the probability of this configuration for 
Zu, A" 

some px->p2-> and p3 is at most 

By the ratio test £ T~ is finite and so the desired probability is 
p>l Xp 

°(h)=w- 
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The Configuration Lemma tells that by ignoring a o(l) piece of the sample 

space of formulae, we may assume that no cycles in a formula are connected 

to one another. Thus, the proof of Theorem 3.3 is completed by showing : 

PROPOSITION 3.7 

Same hypotheses as Theorem 3.1. 

Prob(the sum of the lengths of all cycles in C is at least t and 

no cycles of C are connected to one another) = o(l). 

PROOF. Say the sum of the lengths is t' > t. 

Say there are n; cycles of length t{ for i = 1,... ,s with total length t' = 
s 

As / —y I is not a clause, each t{ > 2. 

One must choose t' clauses and t' literals for these cycles. The literals 

may be chosen in at most (2n)' ways and the clauses may be chosen in at 

most m* ways. But as any cycle of length t{ may be rotated in £,• ways, and 

the rii cycles of length £j may be permuted in n2! ways, the number of ways 
s 

to choose literals was overcounted by a factor of 11 tin'rii\. 

So the probability of n; cycles of length t{ for i = 1,..., s is at most 

1        (2nY'mt' 4 

n^'nl!(22Q) ntin«n,-!A*' 

It is well known that in the uniform distribution on the set of permutations 

on t' letters 
1 

El tin'ni\ 

is the probability that a permutation on t' letters has precisely n,- cycles of 

length ti for i = 1,..., s. 
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So the probability that the sum of lengths of all cycles is t' is at most 

4        4 
Prob(a permutation on t' letters has no fixed point)^- < -rp-. 

So the probability the sum of the lengths of all cycles of C is at least t and 

no cycles of C are connected is at most 

^o- 
So, as 1 = o(i), this probability is o(l). 

Given the phenomenal success of the pure literal heuristic under the hy- 

potheses of Theorem 3.3 it is reasonable to ask if under the same hypotheses 

the pure literal rule asymptotically almost always eliminates all clauses. This 

is false as 

PROPOSITION 3.8 

If n ~ Am where A > 1, then the probability there is a cycle of length 2 is 

asymptotically > 0. 

PROOF. Let p2 be the probability there is no cycle of length 2. We show p2 

f     1 is asymptotic to exp 
4A2, 

The main source of difficulty in computing this probability is that clauses 

may occur more than once. So we write p2 as: 

^2 Prob(there are t repetitions of clauses and no cycle of length 2) 
t>o 

Pick t' so that 1 = o(t') and t' = o{mll2). 

CLAIM 3.9 

Prob(there are at least t' repetitions) = o(l). 

12 



PROOF OF CLAIM 3.9. Say we get exactly t repetitions as we list the m 

clauses. Say these occur as the i", i^d, •••,if clauses where ix < i2 < ... < it- 

Then there are ii — 1 choices for the first repetition, i2 — 2 choices for the 

second repetition,..., and it — t choices for the t repetition. And there are 

at most (2N)m~t choices for the other m — t clauses (where N = n(n — 1)). 

Thus, the probability of exactly t repetitions is at most      '"   where 
(ziv) 

st,m=        £        (n - l)(*2 - 2) - - - (i4 - *)- 
l<n<«2<---<«t<m 

By induction we have: 

LEMMA 3.10 

(m - t)2t m2t 

^ Sttm  5: 
2H\      ~    '    ~ 2HI 

1 fm2\* 
So the probability of exactly t repetitions is at most — I ——:    .  So the 

probability of at least t' repetitions is at most YL ~r I TT7 ) ■> which is o(l) as 

l = o(t'). 

Thus, p2 is asymptotically 

E   Prob(there are t repetitions of clauses and no cycle of length 2). 
0<t<t' 

As no cycle of length 2 is produced as we list the m clauses if and only if each 

clause not repeating a previous clause avoids the converse of each previous 

clause, a similar argument shows 

AH 
Prob(there are t repetitions of clauses and no 2 cycle ) = st<r 2tNm(N-(m-t))l 

m2t 

By Lemma 3.10 as t' = o{tll2), sttm is uniformly asymptotic to -— for t < t'. 
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Thus, p2 is asymptotic to 

v m2tNl 
0~t,22W»*!(JV-(m-*))!' 

x2 

By Stirling's formula and ln(l - x) = -x - —- + 0(x3), this is asymptotic to 

i       /        9 \  * / 2 \ 1 / 77T \ /    mM 
Eiib  ex? *' UiV / V   2JV 

By the power series expansion of exp(a;), this is asymptotic to 

exp Uv exp Niv, 
which is asymptotic to exp 

4A2 

Proposition 3.8 is in striking contrast to Broder, Frieze, and Upfal's [2] 

results for the pure literal rule for 3-clauses. They show that in their model 
TYl 

with asymptotically 1 probability there is no pure literal block provided — 

is sufficiently small (< 1.63). 

Proposition 3.8 and Erdös and Renyi's [9] results on the occurrences of 

cycles in random graphs suggest the following conjectures, assuming Aim < 

n < X2m where the A;'s are constants > 1. 

CONJECTURE 3.11 

For any fixed t the asymptotic probability there is a PL block of size t is 

strictly between 0 and 1. 

CONJECTURE 3.12 

The asymptotic probability there is a PL block of some size is strictly between 

0 and 1. (By the Configuration Lemma, Conjecture 3.12 is equivalent to: The 

asymptotic probability there is a cycle of some length is strictly between 0 

and 1.) 
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4    Optimality of Theorem 3.1 

We show Theorem 3.1 is near optimal by showing if n = Am where 0 < A < 1, 

then with asymptotic probability 1 there is a PL block of size rrf for some 

e > 0. This follows immediately from the proof in Chvätal and Reed [7] 

that for such A, Prob(C is satisfiable)= o(l). They use the second moment 

method to show Prob(C has a "snake" of size me)= 1 — o(l) for any e < -. 
o 

It is trivial to observe a snake is a PL block. 

A larger e with a simpler proof may be obtained by using cycles instead 

of snakes. 

THEOREM 4.1 

Let 0 < A < 1. Assume n < Am. Let s = o(n1/'4). Let C be a random 

sequence of m clauses from Q2(n). Then 

Prob(the pure literal rule may be applied to C until fewer than 

s clauses remain) = o(l). 

NOTE: s is a function of m. It suffices to prove this theorem for 1 = o(s). 

PROOF. As in Theorem 3.3 we may as well assume that Am is an integer 

and n = Am. 

DEFINITION 4.2 (s-cycle) 

An s-cycle is a cycle lx —»• l2 -> •••—>• ls —>■ h in which li,...,ls have distinct 

variables. 

We show Prob(C has an s-cycle)= 1 — o(l). 

For any s-cycle A let 

XA= < 
1   if each clause of A occurs exactly once in each C 

0   otherwise 
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Let x = E{XA I A is an 5-cycle}. We show with probability 1 - o(l) some 

5-cycle occurs by showing Prob(x > 0)= 1 - o(l). This is accomplished by 

the second moment method. That is, we show 

E(X
2) = E(Xni + o(l)). 

Then by Chebyshev's inequality, 

Probflx - E(X)\ > E(X)) < E{X2)
E(xyX)2 = °^ 

and so Prob(x = 0)= o(l). 

As in [7], 

E(XA) = [^)  (1 + o(l)) uniformly in A. 

There are [    )5!25 = (2n)s(l + o(l)) ways to choose the vertices of an 

5-cycle. So 

E(X)=(^)S(l + o(l)). 

Also if A and B are s-cycles sharing exactly i edges, then 

/ m \ 2s_i 

E{XAXB) = ( ^J       (1 + o(l)) uniformly in A, 5, and i. 

Thus 

/2n2V 
£(XAXB) = ( — )  E{XA)E{XB){1 + o(l)) uniformly in A, £, and i. 

Let pi(n) (usually written pi) be the probability that a random 5-cycle B 

shares i edges with a fixed 5-cycle A. 

So 

E(x2) = ±Pi(2-f)'E(x2)(l + o(l)). 
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The main work involves obtaining estimates of the p{. As there are 

(2n)s(l + o(l)) s-cycles, 

number of s-cycles B such that A and B share i edges 
Pi = (2n)'(l + o(l)) • 

Let AC\ B denote the edges in both A and B. Let k be the number of 

connected components of A D B. Let N(i,k) be the number of s-cycles B 

such that Aflß has i edges and & components. 

So for i > 0 
Ek>iN{i,k) 

Pi - 
(2n)-(l + o(l))" 

For 0 < i < s, AT(i, fc) may be overestimated by the product of 

i) the number of ways of placing in A the k components of A D B 

ii) the number of ways of placing in B the k components of A 0 B 

iii) the number of ways of placing in B the edges for each component of 

Af)B 

and 

iv) the number of ways of assigning literals to the vertices in B, but not 

inAnß. 

i) and ii) may be overestimated as follows: Mark the beginning of each 

component with a + and the end with a —. So we must choose positions for 
( s \        s2k 

the 2k markers giving at most I < .    .. choices. 

iii) is the number of ways of permuting same size components of A D B 

in B. This is largest when all the components are the same size and, hence, 

is at most k\. 
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As i < s, A n B has i + k vertices and hence B has s - (i + A;) vertices 

not in An B. So iv) is at most (2n)s^i+k\ Thus, 

„2fc \ 2 ^kO,n)s 

i+k ^40mnrli*k,-wß 
So 

i Ah 1 4 1 

»S^E (^(1 +0(1» = ^i-_z(l+o(l)). 
2n 

As 5 = ofr1'4) 

<r  
(2n)8' 2n 

1      S4 

Pi < -———(1 + o(l)) uniformly in i for 0 < i < s. 

If i = 5, the only choice for £? is which vertex of A is if. 

So 

^(2^1 + °W- 
So 

So 

So 

t«*UF
+
££(SF d+o(i))MD. 

po = 1 - 0(1). 

£(x2) - £(x)2 = &W f—)lE(x)2(i + 0(1))- 
»=i \ m / 

By the above estimates of pi 

E{X2) ~ E{Xf < ^ £ (£)WU + -(I)) + s (£f £(x)2(l + o(l)). 
1 = 1 

But —Y (-Y = o(l) as - = A < 1 and s = o{n^4) ; and 5 (-Y = 
2n r-f \m/ m v"" »=i 

o(l)   as — = A < 1 and 1 = o(s) 
m 
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QUESTION 4.3 

How much larger of a pure literal block occurs asymptotically almost always 

for n = Xm where 0 < A < 1? 

5    Topics for further study 

For 2-clauses we have seen there is an abrupt transition in the performance 

of the pure literal heuristic. It occurs for n = Xm as A switches from < 1 

to > 1. It is striking that this is the same A at which occurs the abrupt 

transition in 2-satisfiability shown by Chvätal and Reed in [7] and Goerdt in 

[15]. Is there a comparable transition in the performance of the pure literal 

heuristic for fc-clauses for k > 3 ? First one should find an a (depending on 

k) such that for n > am, asymptotically there are almost never pure literal 

blocks of size at least log(m). And one should find a ß (depending on k) such 

that for n < ßm, asymptotically there are almost always pure literal blocks 

of size rrf for some e > 0. Next one should determine if as for k = 2, the 

inf of the possible a's = the sup of the possible /3's. We are confident that 

unlike for 2-clauses such a transition would be larger than the conjectured 

transition for satisfiability. 
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